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Abstract: We constructed a probabilistic simulator that allows all the events 1 population dynamics such as death,

birth, mutation, and suppression/stimulation to be written with probabilistic rules. The simulator also facilitates a lattice

used for expressing distribution and diversity (number of distinct strains) of quasispecies. The simulator 1s used to

investigate the diversity threshold of 1 HIV and T-cell interaction.
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I INTRODUCTION

The immune system 1s a complex system, and it
exhibits a complex behavior that can be modeled by a
non-linear differential equations.

The antigenic diversity threshold theory by Nowak
and May [1, 2] also involves such a complex behavior,
giving a threshold. The theory determines a threshold of
diversity of HIV (human immunodeficiency wirus)
strains when the threshold 15 breached, T-cells are
unable to cope with HIV and it will progress to AIDS
(acquired immune deficiency syndrome).

HIV 15 a retrovirus, which mutates with a high error
rate during proliferation. Hence, diversity of HIV
mcreases i vivo even 1if it started with a single wild
type.

Since the mutation 1s intnnsically a probabilistic
event, many probabilistic extensions of the population
dynamics have been studied. However, we treated not
only mutation but all the other events such as birth,
death. sttmulation/inhibition, as stochastic events for
simplicity and uniformity. This uniform treatment of
population dynamics 1s one feature of our approach, and
we consider this uniform stochastic treatment allows
natural modeling for a simulation of biological events.
Another feature of our approach 1s that 1t facilitates two
lattice spaces: one for HIV and another for T-cell.

We  describe  the  probabilistic  simulator
demonstrating how the deterministic models can be
mapped to the probabilistic model. We vernfied 1ts
performance by companng the results by the
probabilistic simulation with these by the conventional

the determunistic model.
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II. THE PROBABILISTIC SIMULATOR

For the immune reactions mvolving T-cell receptors,
diversity plays an important role simularly te those
wvolving antibodies. The immune system can deal with
unknown antigens by the diversity. The pathogen such
as retrovirises that mutate with a high error rate also
uses diversity to escape from the immune system.

The dimension of deterministic model becomes
higher as the model involves higher diversity. It 1s often
difficult to build the mutation imnto the differential
equation.

We transformed the deterministic model to a
stochastic model by regarding every change in the
population as a stochastic event described by a
transition rule. Thus, the deterministic differential
equations must be transformed to a Markov chain at
first.

1. The probabilistic model
The Nowak-May model describes an interaction

between T-cells and HIVs. The model is described by &

variables of HIV distinct strains and N variables of T-

cell each of which specifically interacts with the

corresponding strain of HIV as 1 (1).
v; =B, — px; :]
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A variable v; 15 a population of HIV and x; 15 that of
helper T-cells that remove v, specifically (=1, 2,---, N).

(1)

The parameters are nonnegative real numbers as shown
in the following.
b Replication rate of v;

pi- Rate of elimination of v; by x;
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ki Rate of stimulation of x; by v;
u;: Rate of depletion of x; by HIV
This model 1s transformed to a stochastic model

with a set of transition rules as shown in Table 1.
Transition rate 7 1s based on the equation (1). However,
when HIV proliferates, the mutation occurs at the rate of
mutation rate 4 (0=x=1), and a new HIV stram v;
(i#7) 15 mutated from ;.

Table 1. State transition mle transformed from
MNowak-May model

k& Transition Transition Event

rule rate 7,
1 =+l (1-p)byy  HIV proliferation
2 vi— v 1 PV HIV removal
3 xp— x;+1 vy T-cell stimulation
4 x—x— 1 w; (3 wi;  T-cell inhibifion
5 vi— vl pbiv; HIV mutation

The events occur obeying the Paisson process, and
hence intervals ¢ between the consecutive events must
follow the probability density function as in (2).

AN = rexp(-r1)
r= 2 (2)
Pr=Ter
The expression (2) shows that event & occurs with a
probability p, in state transitions. The interval r is

calculated for each wvarable as in Fig.1l. At each

occurrence time, the state transition takes place.
Time
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Fig.l. Time distribution for each vanable

2. Lattice space

We use two two-dimensional lattice spaces of size N
(=m>n) as mn F1g.2. One 1s for HIV strains with different
(B:, ). T-cells,
parameters (k. ;) that react specifically to a strain (b,
pJ’)-

parameters Another 15 for with

A strain 7 changes to either of four neighborhoods
with an equal probability when the strain mutated.
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Fig.2. Two lattice spaces. each lattice shows distinct strains.
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3. The implementation of simulator

Fig 3 shows a screenshot of the two lattice spaces mn
a simulation. The size of the lattice is set to the number
of HIV strains, and the color of each lattice indicates the

population density of the corresponding strain.

B niimulstar

Fig.3. A screenshot of lattice spaces

The simulator 15 composed of three modules (Fig 4).
The user-interface module passes parameters to the
simulator module and gets results from the simulator.
The simulator module realizes a Monte Carlo simulation
for stochastic models. The model module handles the
state transifion rules describing a Markov chain. Any
simulation must be preceded by the compilation of a

Markov chain from a determunistic model.

user-interface model transformed

to_Markov chain

probabilistic
sinmlator

Fig4. Composition of the simulator, model module

and user-interface

L SIMULATION EXAMPLES

To demonstrate the probabilistic simulation, we
compared the results with those by the deterministic
simulation. The model used for the companson is the
Nowak-May model and the Lotka-Volterra model. The
Runge-Kutta method (RK4) 1s used in the deterministic

simulation.

1. Nowak-May Maodel
The state transition rules of the Nowak-May model
are shown m Table 1. The diversity threshold condition

of the model follows:
bu,

)2 bk,

This D indicates the antigenic diversity. In this

<1 . (3)

model, the immune system cannot suppress HIV when
the threshold 15 exceeded, and the population of HIV

becomes out of control To verify the threshold



condition, we conducted simulations for the following
threecases: D=1, D=1, andD=1.
A. HIV diversity below the threshold

The case when the diversity D is less than the
threshold (D=1) 1s presented 1n this section. Table 2 lists

parameters for the simulations.
Teble 2. Condiion of the simulation in the case D=1

Lattice space 4=4
Initial population of T-cells 0
Initial population of HIV each 10
variable species

Mutation rate 0

Fig 5 compares the results by the simulator with
those by the RK4. The figure plots total population of
HIV and T-cell when time develops.

The population of HIV decreases in RK4 because
the diversity 1s below the threshold. The phenomenon
that HIV 1s suppressed by the immune system can be

observed similarly in the probabilistic simulation.
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Fig.5. Time evolution of T-cell and HIV population (D=1)

B. HIV diversity over the threshold

The case when the diversity D 1s greater than the
threshold (D=1) 1s plotted in Fig. 6. The parameters for
simulation are the same as those in Table 2 except the
lattice space has the size 4x6.

In this case also, the results by the probabilistic
simulator qualitatively match well with those by RE4.
The population of HIV 1s increasing and will explode
eventually.
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Fiz.6. Time evolution of T-cell and HIV population (D=1)
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C. HIV diversity near the threshald

The case when the diversity D equal the threshold
(D=1) 1s presented in this section. The parameters for
simulation are the same as those in Table 2 except
lattice space that 1s 4=5. Fig.7 compares the results by
the simulator with those by the RK4.

The population of HIV 1s kept almost constant in the
result of RE4. On the other hand, HIV 1s suppressed by
the T-cells in the probabilistic simulator. Further,
fluctuation i HIV total population 15 also observed
during decay of HIV.

There 1s another marked difference between the
original model by a differential equation and the
transformed model by a Markov chain (other than the
obvious difference of stochastic and deterministic). The
Markov chain model uses integers for population, while
the differential equation uses real numbers for
population density. The qualitative difference between
the results by the simulator and those by RK4 observed
i this simulation (Fig. 7) may be caused by this
difference. Although when the population density of T-
cell 1s evaluated as 0.1 1 RK4, the population can be
counted as 1 i the simulator (the Markov chain). Thus,
the suppression from T-cells 15 evaluated higher mn the
simulator than the suppression i RK4. With only
simulation results., however, we are not able to conclude
which reflects the reality more faithfully. Nevertheless,
the probabilistic simulator seems to provide an instance

that could have occurred in reality.
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Fig.7. Time evolution of T-cell and HIV population (D=1)

D, Mutation

This section presents a case when the mutation
occurs during the interaction. Since the deterministic
simulation does not allow mutation, we do not have the
result by RK4 unlike the proceeding section. Fi1g.8 plots
total population of HIV and T-cell when time develops.

The parameters are the same as those in the section
C above except the mutation rate 1z 0.5, HIV 1s
suppressed by the mmmune system with the parameters



in section C. The phenomenon that the immune system
cannot suppress HIV due to the diversity increase by
mutation can be observed.
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Fig 8. Time evolunon of total population of HIV and T-cell

2. Lotka-Volterra Model

The Lotka-Volterra model 15 described by nonlinear
differential equations as in (4). The equations express
stimulation and suppression between the predator and

prev [5. 6].
t=xla-by
=x( V) “
7 =—y(c+dx)

A wariable x 1s the population of the predator and y 1
that of the prey. The parameters a, b, ¢ and 4 are
nonnegative real numbers. Table 6 lists the state
transition mules transformed from the equations (4).

Table 6. Tranzition mules transformed from Letka-Volterra model

k  Transition Transition Event
rule rate r:

1 x— x+1 ax Increase of prey

2 yx—=11 bx Decrease of prey

3 y—y+l dy Increase of predator

4 y—y1 cy Decrease of predator
A Resulr

Table 7 lists parameters for the simulations. The
parameters a, & ¢ and & are as follows: a=5. 5=0.03.
=5, and a=0.01.

Table 7. Condition of the sumulation

Lattice space 1x1

Initial population of the predator 200

Initial population of the prey 50

Mutation rate 0

Fig.9 compares the probabilistic simulation with the
deterministic one by the RK4. The figure plots the
population of the predator and the prey when time
develops. In both probabilistic and deterministic
simulations, the populations of the predator and prey
oscillate. We should note, however, there 1s the case
when the simulator result gives increasing amplitude of
the oscillation, while RE4 gives a fixed one.
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Fig.9. Time evolution of the predator and the prey

IV. CONCLUSION

We have constructed a probabilistic simulator that
allows a probabilistic simulation required for a Markov
chain transformed from a deterministic differential
equation. Probabilistic simulation can involve an
wntrinsically  stochastic event such as mutation in
population dynamics of quasispeacies.

We observed that probabilistic simulations can
generate results qualitatively similar to those by the
determunistic simulations. However, some differences
caunsed by the difference between discrete and

continuous values in populations are also observed.
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